Diagnostic Imaging Pathways - Hip Fracture (Suspected)

Population Covered By The Guidance

This pathway provides guidance on imaging adult patients with suspected hip fracture.

Date reviewed: August 2013

Date of next review: 2017/2018

Published: August 2013

Quick User Guide

Move the mouse cursor over the PINK text boxes inside the flow chart to bring up a pop up box with salient points. Clicking on the PINK text box will bring up the full text.

The relative radiation level (RRL) of each imaging investigation is displayed in the pop up box.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>RRL</th>
<th>EFFECTIVE DOSE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Symbol]</td>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Minimal</td>
<td>< 1 millisieverts</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Low</td>
<td>1-5 mSv</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Medium</td>
<td>5-10 mSv</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>High</td>
<td>>10 mSv</td>
</tr>
</tbody>
</table>

Pathway Diagram
Image Gallery

Note: These images open in a new page

1. **Fractured Pubic Ramus**

 Image 1 (Plain Radiograph): Fractured left superior pubic ramus (arrow).
2 Fractured Acetabulum

Image 2 (Plain Radiograph): Fractured right acetabulum (arrow).

3 Inter-Trochanteric Femoral Fracture

Image 3 (Plain Radiograph): Inter-trochanteric fracture of the right hip (arrow).

4 Undisplaced Inter-Trochanteric Femoral Fracture

5 Sub-Capital Femoral Fracture

Image 5 (Plain Radiograph): Sub-capital fracture of the right hip (arrow).

Teaching Points

- Plain radiographs will show a suspected fracture in the majority of cases
- If clinical suspicion of occult hip fracture persists MRI is the imaging modality of choice
- CT or nuclear medicine bone scan are alternatives to MRI

Plain Radiography

- Will show a suspected fracture in the majority of cases
- May miss some fractures, particularly those that are non-displaced or in patients with osteoporosis
- Reported overall incidence of radiographically occult fractures varies between 2 – 14% 2-9
- Lower level of interobserver agreement than CT or MRI 10
- In patients undergoing MRI for suspected hip fracture, radiographic findings had a false positive rate of 12% 7
- If clinical suspicion remains high despite normal or equivocal radiographs further imaging should be pursued, as delayed diagnosis increases the rate of secondary fracture displacement and morbidity and is associated with lengthened hospitalisation periods and increased costs 4,8,11,12

Magnetic Resonance Imaging (MRI)

- MRI is superior to other imaging modalities in detecting occult hip fractures, 1,5 with a reported 100% sensitivity and specificity 6,13-16
- Of those patients with suspected hip fracture who undergo MRI, incidence of radiographically occult hip fracture and occult hip and/or pelvic fracture varies widely, and likely depends on MRI
requesting criteria 1,17

• MRI can also detect other causes of pain such as soft tissue injuries and occult pelvic fractures 1, 15,17-22

Computated Tomography (CT)

• Widely available and generally considered effective at diagnosing the occult hip fracture 2,5,23
• May miss a small percentage of hip fractures, particularly osteoporotic bone, small impacted fractures or undisplaced fractures that run parallel to the axial plane 5,24
• Given the importance of timely surgical management, an MRI may be warranted where CT is negative but a high clinical suspicion remains 5,9
• CT is an alternative when MRI is contraindicated. The shorter acquisition time of CT makes it a useful alternative in elderly and claustrophobic patients who may have motion artefact due to pain or anxiety

Bone Scan

• Although bone scintigraphy is highly sensitive for detection of occult fracture, its lower specificity compared to MRI limits diagnostic utility, often necessitates further advanced imaging, and has been associated with diagnostic and surgical delay 13,14,25-27
• False positive bone scans have been reported with synovitis, tumours, arthritis and degenerative changes sometimes mimicking fractures 13,25,26
• It may be useful where MRI is contraindicated or not available, or where metallic implants may produce local artefacts and decrease imaging quality on MRI
• Bone scans may be negative in the first 24-48 hours in elderly patients with slow bone turnover or osteoporosis
• There is some debate over the optimal time for doing a bone scan with one study showing it to be accurate within 24 hours of injury but there is a perception that for optimum results it should be delayed for up to 72 hours 13

References

Date of literature search: April 2013

The search methodology is available on request. Email

References are graded from Level I to V according to the Oxford Centre for Evidence-Based Medicine, Levels of Evidence. Download the document

18. Galloway HR, Meikle GR, Despois M. **Patterns of injury in patients with radiographic occult fracture of neck of femur as determined by magnetic resonance imaging.** Australas Radiol. 2004;48(1):21-4. (Level II evidence)

Information for Consumers

<table>
<thead>
<tr>
<th>Information from this website</th>
<th>Information from the Royal Australian and New Zealand College of Radiologists’ website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consent to Procedure or Treatment</td>
<td>Computed Tomography (CT)</td>
</tr>
<tr>
<td>Radiation Risks of X-rays and Scans</td>
<td>Contrast Medium (Gadolinium versus Iodine)</td>
</tr>
<tr>
<td>Hip Fracture (Suspected)</td>
<td>Gadolinium Contrast Medium</td>
</tr>
<tr>
<td>Bone Scan</td>
<td>Iodine-Containing Contrast Medium</td>
</tr>
<tr>
<td>Computed Tomography (CT)</td>
<td>Magnetic Resonance Imaging (MRI)</td>
</tr>
<tr>
<td>Magnetic Resonance Imaging (MRI)</td>
<td>Plain Radiography/X-rays</td>
</tr>
<tr>
<td>Plain Radiography (X-ray)</td>
<td>Radiation Risk of Medical Imaging During Pregnancy</td>
</tr>
<tr>
<td></td>
<td>Radiation Risk of Medical Imaging for Adults and Children</td>
</tr>
<tr>
<td></td>
<td>Nuclear Medicine Bone Scan</td>
</tr>
</tbody>
</table>

Copyright

© Copyright 2015, Department of Health Western Australia. All Rights Reserved. This web site and its content has been prepared by The Department of Health, Western Australia. The information contained on
this web site is protected by copyright.

Legal Notice

Please remember that this leaflet is intended as general information only. It is not definitive and The Department of Health, Western Australia can not accept any legal liability arising from its use. The information is kept as up to date and accurate as possible, but please be warned that it is always subject to change.

File Formats

Some documents for download on this website are in a Portable Document Format (PDF). To read these files you might need to download Adobe Acrobat Reader.